Maximal Tori

Definition 1. Let $r \ge 1$. The standard torus of rank **r** is defined as $\mathbb{T}^r = \{ \operatorname{diag}(z_1, \ldots, z_r) : |z_1| = \ldots = |z_r| = 1 \} \subseteq Gl_r(\mathbb{C}).$ A torus of rank **r** is any Lie group isomorphic to \mathbb{T}^r .

Definition 2. Let G be a Lie group. An element $g \in G$ is a (topological) generator of G, if $\overline{\langle g \rangle} = G$ with the cyclic subgroup $\langle g \rangle \subseteq G$.

Proposition 3. Every torus has a generator.

Definition 4. Let G be a Lie group and $T \subseteq G$ a closed subgroup which is also a torus. T is called a **maximal torus** in G, if the only torus $T' \subseteq G$ for which $T \subseteq T'$ is T itself.

Proposition 5. (Standard maximal tori) Each of the following is a maximal torus in the stated group: $\{R_{2n}(\theta_1, \ldots, \theta_n) : \forall k \ \theta_k \in [0, 2\pi)\} \subseteq SO(2n)$ $\{R_{2n+1}(\theta_1, \ldots, \theta_n) : \forall k \ \theta_k \in [0, 2\pi)\} \subseteq SO(2n+1)$ $\{\operatorname{diag}(z_1, \ldots, z_n) : \forall k \ |z_k| = 1\} \subseteq U(n)$ $\{\operatorname{diag}(z_1, \ldots, z_n) : \forall k \ |z_k| = 1, z_1 \cdots z_n = 1\} \subseteq SU(n)$

with $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

From now on let G be a compact, connected Lie group and $T \subseteq G$ a maximal torus.

Theorem 6. For each $g \in G$ there exists an $x \in G$ such that $g \in xTx^{-1}$ (g is conjugate to an element of T). Equivalently, one can write $G = \bigcup_{x \in G} xTx^{-1}$.

Theorem 7. If $T, T' \subseteq G$ are maximal tori, there exists a $g \in G$ such that $T' = gTg^{-1}$.

Theorem 8. (Principal axis theorem)

In each of the matrix groups SO(n), U(n) and SU(n) every element is conjugate to one element of the corresponding standard maximal torus.

Theorem 9. (Principle axis theorem for Lie algebras)

For each of the following Lie algebras \mathfrak{g} , every element $x \in \mathfrak{g}$ is conjugate in G to one of the stated form:

$$\begin{split} \mathfrak{so}(2n): \ & R'_{2n}(t_1, \dots, t_n), \ \forall k \ t_k \in [0, 2\pi) \\ \mathfrak{so}(2n+1): \ & R'_{2n+1}(t_1, \dots, t_n), \ \forall k \ t_k \in [0, 2\pi) \\ \mathfrak{u}(n): \ & \operatorname{diag}(t_1 i, \dots, t_n i), \ \forall t_k \in \mathbb{R} \\ \mathfrak{su}(n): \ & \operatorname{diag}(t_1 i, \dots, t_n i), \ \forall t_k \in \mathbb{R} \ t_1 + \dots + t_n = 1 \end{split}$$

with
$$R'(t) = \begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix}$$

Definition 10. The **rank** of a compact Lie group is defined as the rank of a corresponding maximal torus.

Theorem 11. Let $T \subseteq G$ be a maximal torus and $T \subseteq A \subseteq G$ where A is abelian. It follows that A = T (i.e. every maximal torus is a maximal abelian subgroup).

Definition 12. The normaliser $N_G(H)$ for a subgroup $H \subseteq G$ is the smallest subgroup of G in which H is normal: $N_G(H) = \{g \in G : gHg^{-1} = H\}.$

If H = T is a maximal torus in G, the Weyl group $W_G(T)$ of T in G is defined as the quotient group $W_G(T) = N_G(T)/T$.

Theorem 13. Let $T \subseteq G$ be a maximal torus.

- i) The Weyl group $W_G(T) = N_G(T)/T$ is finite.
- ii) $W_G(T)$ acts on T by conjugation, i.e. $gT \cdot x = gxg^{-1}$. This action on T is faithful, meaning that the coset $gT \in N_G(T)/T$ acts trivially on T iff $g \in T$.

Exercise. Show that the standard maximal torus T for U(2) given in Proposition 5 is indeed a maximal torus and calculate its Lie algebra as well as the normaliser of T in U(2) and the corresponding Weyl group.

References

- [1] Baker, Andrew Matrix Groups: An Introduction to Lie Group Theory.
- [2] Tapp, Kristopher Matrix Groups for Undergraduates.